

\$0040-4039(96)00029-9

Amphidinolide Q, a Novel 12-Membered Macrolide from the Cultured Marine Dinoflagellate Amphidinium sp.

Jun'ichi Kobayashi*, Miho Takahashi, and Masami Ishibashi

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Abstract: Amphidinolide Q (1), a novel cytotoxic 12-membered macrolide having an unprecedented carbon-skeleton, was isolated from the cultured marine dinoflagellate *Amphidinium* sp. and the structure elucidated on the basis of spectroscopic data.

We previously isolated a series of cytotoxic macrolides, amphidinolides A ~ H and J ~ P, and a related linear metabolite, amphidinin A, from dinoflagellates of the genus *Amphidinium*, which were symbionts of Okinawan marine flatworms of the genus *Amphiscolops*. We further continued investigation on the constituents of this microalga (strain number, Y-5) and now isolated a novel 12-membered macrolide, amphidinolide Q (1), exhibiting moderate cytotoxicity against murine lymphoma L1210 cells in vitro (IC₅₀, 6.4 μ g/mL). Here we describe the isolation and structure elucidation of compound 1, which possesses an unprecedented carbon framework but contains some unique structural or biogenetic features commonly found in other amphidinolides.²

The harvested algal cells (878 g, wet weight, from 3420 L of culture) were extracted with MeOH/toluene (3:1) and partitioned between toluene and water. The toluene-soluble fraction was subjected to a silica gel column (CHCl₃/MeOH, 95:5) followed by gel filtration on Sephadex LH-20 (CHCl₃/MeOH, 1:1). Further purification by flash chromatography on ODS (YMC-GEL ODS 60 Å, I-40/60; 85% MeOH) and reversed-phase HPLC (Develosil ODS-5; 75% CH₃CN) yielded amphidinolide Q (1) in 0.00005% yield (wet weight).

Amphidinolide Q (1), colorless oil; $[\alpha]_D^{20}$ +47° (c 0.044, MeOH); IR (film) v_{max} 3450, 1720, and 1650 cm⁻¹; FABMS (matrix: glycerol) m/z 351 (M+H)⁺, had a molecular formula of $C_{21}H_{34}O_4$ as established by HRFABMS [m/z 351.2565, (M+H)⁺, Δ +3.0 mmu]. The ¹H and ¹³C NMR spectral data (Table 1) suggested the presence of one ketone, one α,β -unsaturated ester (or lactone), one exomethylene, two oxymethines, three unoxygenated methines, five sp³ methylenes, and five methyl groups. The ¹H-¹H COSY and spin decoupling experiments of 1 clearly revealed four partial structural units ($a \sim d$) shown in Figure 1,

position	δ_{H}	δ_{C}		HMBC correlations	position	δ_{H}		$\delta_{\rm C}$	HMBC correlations
1			169.6		11	5.28	m	74.3	H-10a, H ₂ -12
2	6.25	s	117.4	H ₃ -17	12 (2H)	1.57	ď	41.8	H ₃ -20
3			155.4	H ₃ -17	13	2.35	m	37.2	H ₂ -12, H ₃ -20
4	4.07	br s	73.1	H-2, H ₃ -17	14			155.5	H ₂ -12, H ₂ -15,
OH-4	3.68	d							H ₃ -16, H ₃ -20
5 (a)	2.38	dd	44.6		15 (a)	2.08	m	27.0	H ₃ -16, H ₃ -21
(b)	2.05	dd			(b)	2.02	m		
6			215.1	H ₃ -18	16 (3H)	1.08	t	12.6	H ₂ -15
7	1.89	m	50.5	H ₃ -18	17 (3H)	1.60	S	16.6	H-2
8 (a)	2.29	dЫ	40.3	H ₃ -18, H ₃ -19	18 (3H)	0.75	d	17.9	
(b)	0.90	ddd		5	19 (3H)	0.74	d	23.0	H-8a
9	0.96	m	33.0	H ₃ -19	20 (3H)	1.05	d	21.5	H ₂ -12
10 (a)	1.35	ddd	45.5	H ₃ -19	21 (a)	4.96	br s	107.3	
(b)	1.12	dt		*	(b)	4.95	br s		

Table 1. ¹H and ¹³C NMR Data of Amphidinolide Q (1) in C₆D₆.

 $J \text{ (H/H) in Hz: } 4/\text{OH-4} = 7.8; \ 4/\text{Sa} = 2.9; \ 4/\text{Sb} = 5.6; \ 5a/\text{Sb} = 12.7; \ 7/\text{18} = 7.2; \ 7/\text{8a} = 3.1; \ 7/\text{8b} = 6.8; \ 8a/\text{8b} = 13.5; \ 8a/\text{9} = ca. \ 0; \ 8b/\text{9} = 3.7; \ 9/\text{10a} = 7.2; \ 9/\text{10b} = 2.6; \ 9/\text{19} = 6.7; \ 10a/\text{10b} = 14.1; \ 10a/\text{11} = 5.0; \ 10b/\text{11} = 3.1; \ 11/\text{12} = 5.1; \ 12/\text{13} = 7.2; \ 13/\text{20} = 7.0; \ 15/\text{21} = 1.5; \ 15a/\text{15b} = 15.3; \ 15/\text{16} = 7.4.$

and connections of these four units and remaining two carbonyl carbons (C-1 and C-6) were suggested by the HMBC correlations $[H-2/C-4 \text{ and } H_3-17/C-4 (a/b); H_3-18/C-6 (C-6/c); H_2-12/C-14 \text{ and } H_3-20/C-14 (c/d)]$ as well as the following observations. The ¹H chemical shifts of H₂-5 (Table 1) implied that the C-5 was adjacent to an sp² carbon, and the NOESY correlations observed for H-5a/H-7 and H-5a/H₃-18 were indicative of the connection of b and c units through the C-6 ketone. Selected key HMBC and NOESY correlations were also shown in Figure 1. The ¹³C chemical shift of the C-17 methyl (δ_C 16.6) argued that the Δ^2 -olefin was E, and this double bond was suggested to be conjugated with the C-1 ester carbonyl from the ¹³C chemical shifts (C-2: δ_C 117.4; C-3: δ_C 155.4), which was also consistent with the UV absorption data of 1 (MeOH, λ_{max} 222 nm, ε 10300). Since the molecule of 1 was inferred to contain one ring from the unsaturation degrees, the C-1 carbonyl had to be linked to the C-11 oxymethine to form a 12-membered lactone ring, which was coincident with the low-field resonance of H-11 (δ_H 5.28). The planar structure of amphidinolide Q was thus elucidated as 1. Among the NOESY correlations considerably observed for 1,3 cross-peaks for H-2/H-8a, H-7/H-9, H-8a/H-10a, and H-9/H-11 were noteworthy, which may suggest that the H-7, H-9, and H-11 are oriented to the same side of the macrocycle plane whereas the H-2, H-8a, and H-10a are directed otherwise. Further convincing evidences, however, have not been provided thus far for stereochemical assignment of the molecule of 1.

A variety of macrolides with unprecedented carbon skeletons have been isolated from dinoflagellates of the genus Amphidinium. Amphidinolide Q (1) also possesses a backbone skeleton hitherto unknown, while the vicinal location of the C1 branches (methyl and exomethylene groups; C-13 ~ C-14 moiety of 1) is one of the unusual structural features of the amphidinolides and other microalgal metabolites.²

Acknowledgment: We thank Prof. T. Sasaki, Kanazawa University, for cytotoxicity tests. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- 1. Ishibashi, M.; Takahashi, M.; Kobayashi, J. J. Org. Chem. 1995, 60, 6062-6066 and references cited therein.
- 2. Kobayashi, J.; Takahashi, M.; Ishibashi, M. J. Chem. Soc., Chem. Commun. 1995, 1639-1640.
- 3. NOEŚY cross-peaks distinctly observed for 1 in C₆D₆ solution (H/H; mixing time, 800 msec): 2/4-OH, 2/8a, 4/5(2H), 4/17, 5a/5b, 5a/7, 5a/17, 5a/18, 7/9, 7/18, 8a/8b, 8a/10a, 8b/18, 9/11, 9/19, 10a/10b, 10b/11, 10(2H)/12, 10b/19, 11/12, 11/13, 11/21a, 12/13, 12/20, 12/21a, 13/20, 13/21a, 15a/15b, 15(2H)/16, 15(2H)/21b, 16/21b, and 20/21a.